
Chapter 7

[167]

In traditional object-oriented systems, external clients (outside applications) need
to understand the application's domain model in order to interact with it. The
domain model was quite complex, and the external clients had to understand the
fine-grained API, or use complex middleware technologies such as COM/COM+ to
integrate applications.

With SOA, a service interface was built and the methods were exposed as coarse-
grained units, performing individual database transactions to fetch/put data. And
web services allowed easy portability and integration across platforms.

External Clients

Product Object

Order Object

Customer
Object

DATABASE
Service

Interface

Coarse-grained interface Fine grained domain model

So we can abstract the conceptual fine-grained domain model by building an
interface layer over it, which has relatively coarse-grained methods when compared
to those in the model. These methods in turn interact with the domain model and
provide an easy-to-use interface for external clients. Such coarse-grained methods
can easily be implemented using XML web services.

XML Web Services and SOAP Messages
XML web services are software components used to communicate and share data
between distributed systems. XML web services are simple to build and use, and can
talk to disparate systems across networks.

SOA and WCF

[168]

We can use XML web services to create an SOA based framework. Using web
services, we can create message-based systems, and implement web methods that
are complete in themselves. This means that our web methods should not depend
on or call other web methods, and should be independent entities in themselves, so
that they can be called as a "message" by external clients. If the web methods depend
on each other, then the system will become tightly-coupled, and break the basic
principle of SOA, which is to keep components loosely coupled.

External clients should be able to talk to our system using messages, as shown here:

External
Client

Web
service

BL/DAL

Send SOAP Message

Return SOAP Message

The above diagram depicts an XML web service using the Simple Object Access
Protocol (SOAP) for exchanging data across the systems. SOAP is a lightweight
XML-based protocol. SOAP can be used to serialize objects and data across HTTP
using the XML format.

Behind the service interface, we can use our normal domain model. The main idea
behind using web services is to make each part or module independent of the other
parts or modules, in order to achieve a higher degree of loose coupling. We will use
coarse-grained web services to achieve fewer calls, and wrap fine-grained business
logic, exposing it as coarse-grained messages to the outside world.

Sample Project
Let's study a sample project using XML web services with VS 2008, and create a
service interface for our Order Management System. We will perform the following:

1. Use the 5-tier solution we created in Chapter 4.
2. Create a service interface around it using XML web services in an SOA-like

fashion.
3. Allow the GUI to talk to this interface instead of using the business

layer directly.

We can also use the sample code created in Chapter 5 using MVC. MVC
and SOA complement each other, and one should not get confused with
the question, "should I use MVC or SOA?" MVC has a purpose different
from that of SOA, and can be used in any SOA implementation.

